
On algorithms for construction line
diagrams of concept lattices and the set

of all concepts

Sergey A. Yevtushenko, August 7, 2001
Scientific advisor – Prof. Dr. Tatiana Taran

Outline of a talk
• Formal Concept Analysis (reference

information)
• Motivation
• Algorithm description
• Comparison with other algorithms
• Software system “Concept Explorer”

Objectives of master’s thesis
• to develop algorithms for calculation set of all

concepts, construction of Hasse diagrams and
their visualization, finding a base of implications,
which holds in context

• to explore computational complexity of developed
algorithms

• to develop a software, which implements
aforementioned functionality

Formal Concept Analysis (FCA)

Was proposed by Rudolf Wille in 1981 and
actively developed from this time, mainly by
Darmstadt research group on Formal Concept
Analysis

FCA is based on the theorem of Gareth Birkhoff,
that from each binary relation complete lattice can
be yielded.

FCA – basic notions
• Context – triple (G, M, I), where G – set of objects, M – set

of attributes, I⊆ G×M - incidence relation
gIm ⇔ object g has attribute m

GFEDCBA
X1

XXXXXXX7
XXXXX6

XXXX5
XXX4

X XX3
XX2

FCA – basic notions
• Derivation operators

– A′={ m| ∀ g∈ A gIm}, A⊆ G
– B′={ g| ∀ g∈ B gIm}, B⊆ M
Operators A″ and B″ are closure operators

• Formal concept of context (G, M, I) is a pair (A, B), where
A⊆ G, B⊆ M, A′ = B and B′= A.
Set A is called extent and set B intent of concept (A, B).
Also concept can be denoted as (B′, B″) or (A″, A′)

• Set of all concepts of context (G, M, I) is denoted B(G,M,I)

FCA – basic notions
• One part of basic theorem of FCA tells, that B(G,M,I) is a

complete lattice, where infinum and supremum are
defined as

• Between concepts partial order is defined
(A1, B1)≤ (A2, B2), if A1⊆ A2 ⇔ B1⊇ B2






















=






















=

∈∈∈

∈∈∈

∨

∧

��

��

Tt
t

Tt
ttt

Tt

Tt
t

Tt
ttt

Tt

BABA

BABA

,),(

,),(

"

"

FCA – basic notions

Motivation
Why do we need algorithms for finding set of concepts of
context?

Applications:
• Classification
• Data mining (JSM method, associations rules, …)
• Conceptual information systems
• Information retrieval systems
• …

Why do we need to develop as efficient algorithms, as
possible ?

Size of concept lattice in worst case – 2|G| for context (G, G, ≠)

Motivation

In many applications of FCA line diagrams have primary
importance and set of concepts only secondary one.
– Conceptual information systems
– From pruned line diagram rule base for approximate

associations rules can be easily extracted

So, we also need efficient algorithms for construction of
line diagrams

Top-down approach for construction of
Hasse diagram

Find unit element (G, G’) of concept lattice
if (G, G’) ≠ (M’, M)

FindPredecessors((G, G’))

FindPredecessors((A’, A”))
Find set of Lower Neighbours of (A’, A”)

for each Curr ∈ Lower Neighbours
if Curr wasn’t calculated earlier, then

FindPredecessors(Curr)
else

Curr = findLatticeNode(Curr)
Connect((A’, A”), Curr)

Crucial operations
• Determination, that concept (A2,B2) is a direct

predecessor of a concept (A1, B1)

• Determination, whether concept was calculated
earlier

• Finding earlier calculated concept

Algorithm of Tkachev I
C=(G,G’)
BuildLattice((G’, G))

BuildLattice((A’, A”))
if A”= M return
Desc:= (∪ {gI | g∈ A’})\A”// properties of descendants
if Desc=∅

Connect((A’, A”), (M’,M)
return

LN = FindLowerNeigbours((A’, A”), Desc)

for each (B’,B”) ∈ LN
if (B’,B”) ∉ C

C:= C ∪ (B’,B”)
BuildLattice((B’,B”))

Connect((A’, A”), (B’,B”))

Algorithm of Tkachev II
FindLowerNeigbours((A’, A”), Desc)

LN = ∅
for each m ∈ Desc

Extent := { g | m∈ gI & g ∈ A’}
Intent := ∩{gI | m∈ gI & g ∈ A’}
if Intent\A”= {m} or Extent={g|Intent∩gI≠∅ & g∈ A’}

LN := LN∪ (Extent, Intent)

Desc:=Desc\Intent

else

Desc:=Desc\m

Basic ideas of new algorithm
Determination of direct predecessors

Suppose, that that procedure was called for some concept
(A’, A”). We want to define, whether concept
((A”∪ {m})’, (A”∪ {m})”) is a direct predecessor of (A’, A”).

This mean, that doesn’t exists such n, that
A”⊆ (A”∪ {n})”⊆ (A”∪ {m})”⇔(A”∪ {m})’⊆ (A”∪ {n})’⊆ A’

and finally we have
((∪ {gI|g∈ A’\(A”∪ {m})’})∩(A”∪ {m})”)\A”=∅

Lets mark set ∪ {gI|g∈ A’\(A”∪ {m})’} ⇔ ∪ {gI| m∉ gI & g∈ A’}
as Outer[m]

Basic ideas of new algorithm
Determination, whether concept was calculated earlier

Let current concept has intent {a, b}.
Suppose, that we call procedure
FindPredecessors for lower concept with
intent {a, b, c}.
Than procedure will not return, till all
concepts from principal ideal of {a, b, c} will
be computed ⇒ all concepts from principal
ideal has {c} in their intents. So after call to
FindPredecessors(…, {a, b, c}) , for all
concepts, which are descendants of {a,b}
we can use presence of {c} as indicator,
that concept already was calculated

Basic ideas of new algorithm
Old algorithm is inefficient on a chain.
Reasons:
• calculation of all concepts with intent of kind

(A”∪ {m})” when calculating sets of direct
predecessors

• Movement from concept to concept only by
edges of Hasse diagram

• No mechanism of using information about
relations between different attributes, which
are defined during calculation

Cure:
• Set Outer can be used for determination of

relation between attributes – if for some
attribute m attribute n ∉ Outer[m] ⇒

(A”∪ {m})”⊂ (A”∪ {n})”
• Allow to move not only by edges of Hasse

diagram (in our version, used only for
construction of concept set)

XXXXXX6

XXXXX5

XXXX4

XXX3

XX2

X1

fedcba

Two strategies can be applied, depending on memory
requirements:

1. Using already generated part of concept lattice for
search (can be realised with complexity - O(m2))

2. Storing for each nodes predecessors(not only direct),
which were generated for the first time during call of
procedure FindPredecessors, in a tree structure –
search can be realized by O(m) operations. Drawback –
additional memory requirements for storing a tree.

Basic ideas of new algorithm
Finding earlier calculated concept

Algorithm (for calculating concept set)

C=(G,G’)

if M≠G’
CalcPredConcepts((G, G’), ∅)

CalcPredConcepts((A’, A”), Prohibited)
Prohibited = Prohibited ∪ A”

for each m∈ M\Prohibited

NewIntent = M ∩{∩gI|g∈ A’ & m∈ gI}
NewExtent = {g|g∈ A’ & m∈ gI}
Outer = {∪ gI | g∈ A’ & m∉ gI}
if (NewIntent∩Prohibited)\A”=∅

C=C ∪ (NewExtent, NewIntent)
CalcPredConcepts((NewExtent, NewIntent), Prohibited)

Prohibited = Prohibited ∪ (M\Outer)

Theoretical complexity of algorithm

Theoretically possible to achieve complexity of
algorithm – O((m+n)nH) operations

(S. Kuznetsov)
Complexity of algorithm in the worst case is
O(m2 nH), where m=|M|, n=|G|, H=|B(G,M,I)|

Amount of memory needed for a work of
algorithm is O(m(n+m))

Algorithms for finding set of concept

• Chein
• Norris
• Close by One (Kuznetsov)
• Next Closed Set (Ganter)
• Bordat

• Godin
• Lindig
• Nourine & Raynaud
• Titanic (Stumme,Taouil,

Pasquier, Lakhal, Bastide)
• …

There are a lot of algorithms for calculating set of concept /
construction of line diagram

Main properties of algorithms

• Calculation strategy – batch or incremental

• Method of generation of new concepts

• Method of checking of earlier generation of
concept

Properties of algorithms

Intersecting object with earlier
generated concepts

Cardinality heuristicIncrementalGodin

Using earlier generated concepts and
support heuristic

Levelwise approachBatchTitanic

Extending earlier generated concept
(by adding new attribute/object)

Set of earlier visited attributesBatchGrail

Extending earlier generated concept
(by adding new attribute/object)

Lexical orderBatch CBO

Extending earlier generated
concept(by finding new object,

minimal by inclusion)

TrieBatchBordat

Extending earlier generated concept
(by adding new attribute/object)

RB-TreeBatchLindig

Using earlier generated conceptsLevelwise approachBatchChein

Intersecting object with earlier
generated concepts

Lexicographical TreeIncrementalNourine

Intersecting object with earlier
generated concepts

Set of earlier added objectsIncrementalNorris

Intersecting objects intentsLexical orderBatchGanter

Method of calculating new conceptsChecking earlier generation of
intents

Calculation strategy

Strategies for construction of line diagram

• Just in time – when concept is calculated for the first time,
all his direct predecessors are calculated (Bordat, Lindig,
our)

• After calculation of concept set for each element
determine direct predecessors and find them between
generated concepts (Nourine, Ganter, …)

Some algorithms can be used with both strategies

• Incremental calculation and updating of line diagram
(Godin)

Methodic of comparison of algorithms
• Software system for comparison of algorithms was

developed (console java application)
• Comparison was performed on randomly generated

contexts of different sizes with different percent of fill cells
per row, and on contexts of kind (G, G, ≠) on which worst
case is achieved .

• All algorithms comparisons(as for calculation of concepts’
set, as well for construction of line diagram) were
performed on the same set of contexts

• For every non-square context comparison was also
performed on transposed context, to which corresponds
isomorphic concepts’ lattice.

• In order to ensure independence from garbage collector
between runs of different algorithms all references to data,
used and generated by previous algorithm, were freed
and garbage collector was called

• Before starting comparisons one test run on small context
was performed, in order to ensure presence of all used
classes in memory

• No use of virtual memory was allowed
• Most efficient implementations, known to author, were

used
• Comparison was performed on Intel Celeron 700 machine

with 512 MB of RAM, with OS Windows NT 4.0 (Service
Pack 6), otherwise idle.

Methodic of comparison of algorithms

Contexts, on which comparison was
performed

• Sparse contexts - with number of rows from 100 to 900
(step 100) and 100 columns, with 4 filled cell in a row in
randomly generated positions and transposed ones

• Contexts with number of rows from 20 to 100 and 20
columns, when were filled from 10 % to 70% of cells in a
row and transposed ones

• (G, G, ≠) for |G| from 5 to 19

Compared algorithms for calculation set
of concepts

• Next Closed Set (Ganter) – version, working in
top-down way (dual to original one)

• Grail – my algorithm

• Norris

• Nourine-Raynaud

Calculation of Concept Set (G, G, ≠)

0

2000

4000

6000

8000

10000

12000

14000

Rows 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=20..100
|M|=20, fill factor(per row)= 0,4

0

50

100

150

200

250

300

350

400

Rows 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=20
|M|=20..100, fill factor(per column)= 0,4

0

100

200

300

400

500

600

700

800

Cols 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=20..100
|M|=20, fill factor(per row)= 0,7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Rows 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=20
|M|=20..100, fill factor(per column)= 0,7

0

5000

10000

15000

20000

25000

30000

Cols 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=100..900
|M|=100, |g’|=4

0

2000

4000

6000

8000

10000

12000

Rows 100 200 300 400 500 600 700 800

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Calculation of Concept Set |G|=100
|M|=100..900, |m’|=4

0

5000

10000

15000

20000

25000

Rows 100 100 100 100 100 100 100 100

Next Clos ed S et
Grail
Norris
Nourine - Raynaud

Compared algorithms for construction of
line diagram

• Next Closed Set (Ganter) - with efficient
procedure for constructing line diagram, exploiting
binary search, proposed by Sergey Objedkov.

• Grail (my)
• Nourine-Raynaud with procedure for construction

line diagram, proposed by creators
• Nourine-Raynaud with procedure, based on

calculation of successors intents and search of
corresponding concepts in lexicografical tree

Construction of Line Diagram (G, G, ≠)

0

20000

40000

60000

80000

100000

120000

140000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Construction of Line Diagram |G|=20..100
|M|=20, fill factor(per row)= 0,4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Rows 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Construction of Line Diagram |G|=20
|M|=20..100, fill factor(per column)= 0,4

0

200

400

600

800

1000

1200

1400

1600

1800

Cols 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Construction of Line Diagram |G|=20..100
|M|=20, fill factor(per row)= 0,7

0

20000

40000

60000

80000

100000

120000

140000

160000
Rows 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Construction of Line Diagram |G|=20
|M|=20..100, fill factor(per column)= 0,7

0

10000

20000

30000

40000

50000

60000

70000

80000

Cols 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Construction of Line Diagram |G|=100..900
|M|=100, |g’|=4

0

20000

40000

60000

80000

100000

120000

140000

Rows 100 200 300 400 500 600 700 800

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Calculation of Concept Set |G|=100
|M|=100..900, |m’|=4

0

5000

10000

15000

20000

25000

30000

Rows 100 100 100 100 100 100 100 100

Next Clos ed S et
Grail
Nourine - Raynaud
Nourine - Raynaud 2

Algorithm for finding base of
implications, which holds in context

• Also was developed algorithm for finding bases of
implications, which holds in context

• It is based on classical in FCA notion of pseudointents
(Duquenne-Guiguies) and based on top – down approach,
like algorithms for calculating set of concept/building line
diagram

• Drawback – order, which is good for building concept
lattice, isn’t so good for finding base of implications –
algorithms has a poor performance compared with a
NextClosedSet.

Concept Explorer
During work on project I developed system
“Concept Explorer”.
It is written on Java language.

Now it consists from two parts:
– GUI front end
– Library for performing experiments with algorithms

Concept Explorer

Concept Explorer
It supports following functionality:
Context processing:
• Context editing
• Calculation of arrow relations
• Reduction and purifying of context
FCA operations
• Defining concepts count
• Calculating set of all concepts
• Construction of line diagrams
• Finding base of implications, which holds in context

Concept Explorer

Concept Explorer
• Visualization of line diagrams(several layout

methods and modes of visualization)
– Layout, minimizing number of edge intersection
– Chain decomposition layout
– Two different schemes of force-directed layout

• Mining bases of association rules

Supported methods of layout of concept
lattices

Supported methods of layout of
concept lattices (2)

Supported methods of layout of concept
lattices (3)

Concept Explorer: future development

• Support for multi-valued context
• Integration of tools for data preprocessing
• Support for nested line diagrams
• Integration of tools of other logic – algebraic

methods of data analysis (JSM-method,
Rough set theory)

Areas of current interest
• Development of algorithms for FCA using BDD –

based presentation of concept lattice
• Performing analysis of data, gathered in

Ukrainian Cancer Register

Algorithm(for calculating Hasse diagram)
C = (G, G’)

if (G, G’) ≠(M’, M)

C = C∪ (M’, M)

FindPredecessors((G, G’), ∅ , ∅)

FindPredecessors((A’, A”), Prohibited)

Desc = (∪ {gI | g ∈ A’})\A”
if Desc = ∅

Connect((A’, A”), (M’, M))

else

WorkSet = Desc

For each m ∈ WorkSet

Intent = M ∩ (∩{gI |g ∈ A’ & m ∈ gI })

Extent={g | g ∈ A’ & m ∈ gI}

Outer = ∪ {gI | g ∈ A’ & m ∉ gI }

if (Intent ∩ Outer)\A” = ∅
WorkSet = (WorkSet \ Intent) ∩ Outer

if (Intent ∩ Prohibited)\A” = ∅
if intent=M

Connect((A’, A”), (M’, M))

else

C = C∪ (extent, intent)
FindPredecessors((extent, intent),

Prohibited)

Prohibited=Prohibited ∪ {m}

