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Outline of a talk
• Formal Concept Analysis (reference 

information)
• Motivation
• Algorithm description
• Comparison with other algorithms
• Software system “Concept Explorer”



Objectives of master’s thesis
• to develop algorithms for calculation set of all 

concepts, construction of Hasse diagrams and 
their visualization, finding a base of implications, 
which holds in context

• to explore computational complexity of developed 
algorithms

• to develop a software, which implements 
aforementioned functionality



Formal Concept Analysis (FCA)

Was proposed by Rudolf Wille in 1981 and 
actively developed from this time, mainly by 
Darmstadt research group on Formal Concept 
Analysis

FCA is based on the theorem of Gareth Birkhoff, 
that from each binary relation complete lattice can 
be yielded.



FCA – basic notions
• Context – triple (G, M, I), where G – set of objects, M – set 

of attributes, I⊆ G×M - incidence relation
gIm ⇔ object g has attribute m
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FCA – basic notions
• Derivation operators

– A′={ m| ∀ g∈ A gIm}, A⊆ G
– B′={ g| ∀ g∈ B  gIm}, B⊆ M
Operators A″ and B″ are closure operators

• Formal concept of context (G, M, I) is a pair (A, B), where 
A⊆ G, B⊆ M, A′ = B and B′= A. 
Set A is called extent and set B intent of concept (A, B). 
Also concept can be denoted as (B′, B″) or (A″, A′)

• Set of all concepts of context (G, M, I) is denoted B(G,M,I)



FCA – basic notions
• One part of basic theorem of FCA tells, that B(G,M,I) is a 

complete lattice, where infinum and supremum are 
defined as

• Between concepts partial order is defined 
(A1, B1)≤ (A2, B2), if A1⊆ A2 ⇔ B1⊇ B2
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FCA – basic notions



Motivation
Why do we need algorithms for finding set of concepts of 
context?

Applications:
• Classification
• Data mining ( JSM method, associations rules, …)
• Conceptual information systems
• Information retrieval systems
• …

Why do we need to develop as efficient algorithms, as 
possible ?

Size of concept lattice in worst case – 2|G| for context (G, G, ≠)



Motivation

In many applications of FCA line diagrams have primary 
importance and set of concepts only secondary one.
– Conceptual information systems
– From pruned line diagram rule base for approximate 

associations rules can be easily extracted

So, we also need efficient algorithms for construction of 
line diagrams



Top-down approach for construction of 
Hasse diagram

Find unit element (G, G’) of concept lattice
if (G, G’) ≠ (M’, M)

FindPredecessors( (G, G’) )

FindPredecessors((A’, A”))
Find set of Lower Neighbours of (A’, A”)

for each Curr ∈ Lower Neighbours
if Curr wasn’t calculated earlier, then

FindPredecessors(Curr)
else

Curr = findLatticeNode(Curr)
Connect((A’, A”), Curr)



Crucial operations
• Determination, that concept (A2,B2) is a direct 

predecessor of a concept (A1, B1)

• Determination, whether concept was calculated 
earlier

• Finding earlier calculated concept



Algorithm of Tkachev I
C=(G,G’)
BuildLattice((G’, G))

BuildLattice((A’, A”))
if A”= M return
Desc:= (∪ {gI | g∈ A’})\A”// properties of descendants
if Desc=∅

Connect((A’, A”), (M’,M)
return

LN = FindLowerNeigbours((A’, A”), Desc)

for each (B’,B”) ∈ LN
if (B’,B”) ∉ C

C:= C ∪ (B’,B”)
BuildLattice((B’,B”))

Connect((A’, A”), (B’,B”))



Algorithm of Tkachev II 
FindLowerNeigbours((A’, A”), Desc)

LN = ∅
for each m ∈ Desc

Extent := { g | m∈ gI & g ∈ A’}
Intent := ∩{gI | m∈ gI & g ∈ A’}
if Intent\A”= {m} or Extent={g|Intent∩gI≠∅ & g∈ A’}

LN := LN∪ (Extent, Intent)

Desc:=Desc\Intent

else

Desc:=Desc\m



Basic ideas of new algorithm
Determination of direct predecessors

Suppose, that that procedure was called for some concept 
(A’, A”). We want to define, whether concept 
((A”∪ {m})’, (A”∪ {m})”) is a direct predecessor of (A’, A”). 

This mean, that doesn’t exists such n, that 
A”⊆ (A”∪ {n})”⊆ (A”∪ {m})”⇔(A”∪ {m})’⊆ (A”∪ {n})’⊆ A’

and finally we have
((∪ {gI|g∈ A’\(A”∪ {m})’})∩(A”∪ {m})”)\A”=∅

Lets mark set ∪ {gI|g∈ A’\(A”∪ {m})’} ⇔ ∪ {gI| m∉ gI & g∈ A’} 
as Outer[m]



Basic ideas of new algorithm
Determination, whether concept was calculated earlier

Let current concept has intent {a, b}. 
Suppose, that we call procedure 
FindPredecessors for lower concept with 
intent {a, b, c}. 
Than procedure will not return, till all 
concepts from principal ideal of {a, b, c} will 
be computed ⇒ all concepts from principal 
ideal has {c} in their intents. So after call to 
FindPredecessors(…, {a, b, c}) , for all 
concepts, which are descendants of {a,b} 
we can use presence of {c} as indicator, 
that concept already was calculated



Basic ideas of new algorithm
Old algorithm is inefficient on a chain. 
Reasons:
• calculation of all concepts with intent of kind 

(A”∪ {m})” when calculating sets of direct 
predecessors

• Movement from concept to concept only by 
edges of Hasse diagram

• No mechanism of using information about 
relations between different attributes, which 
are defined during calculation

Cure:
• Set Outer can be used for determination of 

relation between attributes – if for some 
attribute m attribute n ∉ Outer[m] ⇒

(A”∪ {m})”⊂ (A”∪ {n})”
• Allow to move not only by edges of Hasse

diagram ( in our version, used only for 
construction of concept set )
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Two strategies can be applied, depending on memory 
requirements:

1. Using already generated part of concept lattice for 
search (can be realised with complexity - O(m2))

2. Storing for each nodes predecessors(not only direct), 
which were generated for the first time during call of 
procedure FindPredecessors, in a tree structure –
search can be realized by O(m) operations. Drawback –
additional memory requirements for storing a  tree.

Basic ideas of new algorithm
Finding earlier calculated concept



Algorithm (for calculating concept set)

C=(G,G’)

if M≠G’
CalcPredConcepts((G, G’), ∅ )

CalcPredConcepts((A’, A”), Prohibited)
Prohibited = Prohibited ∪ A”

for each m∈ M\Prohibited

NewIntent = M ∩{∩gI|g∈ A’ & m∈ gI}
NewExtent = {g|g∈ A’ & m∈ gI}
Outer = {∪ gI | g∈ A’ & m∉ gI}
if (NewIntent∩Prohibited)\A”=∅

C=C ∪ (NewExtent, NewIntent)
CalcPredConcepts((NewExtent, NewIntent), Prohibited)

Prohibited = Prohibited ∪ (M\Outer)



Theoretical complexity of algorithm

Theoretically possible to achieve complexity of 
algorithm – O((m+n)nH) operations

(S. Kuznetsov)
Complexity of algorithm in the worst case is 
O(m2 nH), where m=|M|, n=|G|, H=|B(G,M,I)|

Amount of memory needed for a work of 
algorithm is O(m(n+m))



Algorithms for finding set of concept

• Chein
• Norris
• Close by One (Kuznetsov)
• Next Closed Set (Ganter)
• Bordat 

• Godin 
• Lindig 
• Nourine & Raynaud
• Titanic (Stumme,Taouil, 

Pasquier, Lakhal, Bastide) 
• …

There are a lot of algorithms for calculating set of concept / 
construction of line diagram



Main properties of algorithms

• Calculation strategy – batch or incremental

• Method of generation of new concepts

• Method of checking of earlier generation of 
concept 



Properties of algorithms

Intersecting object with earlier 
generated concepts

Cardinality heuristicIncrementalGodin

Using earlier generated concepts and 
support heuristic

Levelwise approachBatchTitanic

Extending earlier generated concept 
(by adding new attribute/object)

Set of earlier visited attributesBatchGrail

Extending earlier generated concept 
(by adding new attribute/object)

Lexical orderBatch CBO

Extending earlier generated 
concept(by finding new object, 

minimal by inclusion)

TrieBatchBordat

Extending earlier generated concept 
(by adding new attribute/object)

RB-TreeBatchLindig

Using earlier generated conceptsLevelwise approachBatchChein

Intersecting object with earlier 
generated concepts

Lexicographical TreeIncrementalNourine

Intersecting object with earlier 
generated concepts

Set of earlier added objectsIncrementalNorris

Intersecting objects intentsLexical orderBatchGanter

Method of calculating new conceptsChecking earlier generation of 
intents

Calculation strategy



Strategies for construction of line diagram

• Just in time – when concept is calculated for the first time, 
all his direct predecessors are calculated (Bordat, Lindig, 
our)

• After calculation of concept set for each element 
determine direct predecessors and find them between 
generated concepts (Nourine, Ganter, …)

Some algorithms can be used with both strategies

• Incremental calculation and updating of line diagram 
(Godin)



Methodic of comparison of algorithms
• Software system for comparison of algorithms was 

developed (console java application)
• Comparison was performed on randomly generated 

contexts of different sizes with different percent of fill cells
per row, and on contexts of kind (G, G, ≠) on which worst 
case is achieved .

• All algorithms comparisons( as for calculation of concepts’ 
set, as well for construction of line diagram) were 
performed on the same set of contexts

• For every non-square context comparison was also 
performed on transposed context, to which corresponds 
isomorphic concepts’ lattice.



• In order to ensure independence from garbage collector 
between runs of different algorithms all references to data, 
used and generated by previous algorithm, were freed 
and garbage collector was called

• Before starting comparisons one test run on small context 
was performed, in order to ensure presence of all used 
classes in memory

• No use of virtual memory was allowed 
• Most efficient implementations, known to author,  were 

used
• Comparison was performed on Intel Celeron 700 machine 

with 512 MB of RAM, with OS Windows NT 4.0 (Service 
Pack 6), otherwise idle.

Methodic of comparison of algorithms



Contexts, on which comparison was 
performed

• Sparse contexts - with number of rows from 100 to 900 
(step 100) and 100 columns, with 4 filled cell in a row in 
randomly generated positions and transposed ones

• Contexts with number of rows from 20 to 100 and 20 
columns, when were filled from 10 % to 70% of cells in a 
row and transposed ones

• (G, G, ≠) for |G| from 5 to 19



Compared algorithms for calculation set 
of concepts

• Next Closed Set (Ganter) – version, working in 
top-down way (dual to original one)

• Grail – my algorithm

• Norris

• Nourine-Raynaud



Calculation of Concept Set (G, G, ≠)
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Calculation of Concept Set |G|=20..100 
|M|=20, fill factor(per row)= 0,4
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Calculation of Concept Set |G|=20 
|M|=20..100, fill factor(per column)= 0,4
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Calculation of Concept Set |G|=20..100 
|M|=20, fill factor(per row)= 0,7
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Calculation of Concept Set |G|=20 
|M|=20..100, fill factor(per column)= 0,7
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Calculation of Concept Set |G|=100..900 
|M|=100, |g’|=4
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Calculation of Concept Set |G|=100 
|M|=100..900, |m’|=4
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Compared algorithms for construction of 
line diagram

• Next Closed Set (Ganter) - with efficient 
procedure for constructing line diagram, exploiting 
binary search, proposed by Sergey Objedkov.

• Grail (my)
• Nourine-Raynaud with procedure for construction 

line diagram, proposed by creators
• Nourine-Raynaud with procedure, based on 

calculation of successors intents and search of 
corresponding concepts in lexicografical tree



Construction of Line Diagram (G, G, ≠)
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Construction of Line Diagram |G|=20..100 
|M|=20, fill factor(per row)= 0,4
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Construction of Line Diagram |G|=20 
|M|=20..100, fill factor(per column)= 0,4
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Construction of Line Diagram |G|=20..100 
|M|=20, fill factor(per row)= 0,7
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Construction of Line Diagram |G|=20 
|M|=20..100, fill factor(per column)= 0,7
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Construction of Line Diagram |G|=100..900 
|M|=100, |g’|=4
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Calculation of Concept Set |G|=100 
|M|=100..900, |m’|=4
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Algorithm for finding base of 
implications, which holds in context

• Also was developed algorithm for finding bases of 
implications, which holds in context

• It is based on classical in FCA notion of pseudointents 
(Duquenne-Guiguies) and based on top – down approach, 
like algorithms for calculating set of concept/building line 
diagram

• Drawback – order, which is good for building concept 
lattice, isn’t so good for finding base of implications –
algorithms  has a poor performance compared with a 
NextClosedSet.



Concept Explorer
During work on project I developed system 
“Concept Explorer”. 
It is written on Java language.

Now it consists from two parts:
– GUI front end
– Library for performing experiments with algorithms



Concept Explorer



Concept Explorer
It supports following functionality:
Context processing:
• Context editing
• Calculation of arrow relations
• Reduction and purifying of context
FCA operations
• Defining concepts count
• Calculating set of all concepts
• Construction of line diagrams
• Finding base of implications, which holds in context



Concept Explorer



Concept Explorer
• Visualization of line diagrams(several layout 

methods and modes of visualization)
– Layout, minimizing number of edge intersection
– Chain decomposition layout
– Two different schemes of force-directed layout

• Mining bases of association rules



Supported methods of layout of concept 
lattices



Supported methods of layout of 
concept lattices (2)



Supported methods of layout of concept 
lattices (3)



Concept Explorer: future development

• Support for multi-valued context
• Integration of tools for data preprocessing
• Support for nested line diagrams
• Integration of tools of other logic – algebraic 

methods of data analysis (JSM-method, 
Rough set theory)



Areas of current interest
• Development of algorithms for FCA using BDD –

based presentation of concept lattice
• Performing analysis of data, gathered in 

Ukrainian Cancer Register 



Algorithm(for calculating Hasse diagram)
C = (G, G’)

if (G, G’) ≠(M’, M)

C = C∪ (M’, M)

FindPredecessors((G, G’), ∅ , ∅ )

FindPredecessors((A’, A”), Prohibited)

Desc = (∪ {gI | g ∈ A’})\A”
if Desc = ∅

Connect((A’, A”), (M’, M))

else

WorkSet = Desc

For each m ∈ WorkSet

Intent = M ∩ (∩{gI |g ∈ A’ & m ∈ gI })

Extent={g | g ∈ A’ & m ∈ gI}

Outer = ∪ {gI | g ∈ A’ & m ∉ gI }

if (Intent ∩ Outer )\A” = ∅
WorkSet = (WorkSet \ Intent) ∩ Outer

if (Intent ∩ Prohibited)\A” = ∅
if intent=M

Connect((A’, A”), (M’, M))

else

C = C∪ (extent, intent)
FindPredecessors((extent, intent),

Prohibited)

Prohibited=Prohibited ∪ {m}


